

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

Anemia	Current	Reference Range	Previous
Ferritin (ng/mL)	199	30~400	174 (04/13/2019)
lron (ug/dL)	109	59~158	164 H (04/13/2019)
UIBC (µg/dL)	113	112~347	191 (04/13/2019)
TIBC (µg/dL)	222	171~505	355 (04/13/2019)
Transferrin (mg/dL)	198 L	203~362	156 L (04/13/2019)
Transferrin Saturation (%)	49	15~50	46 (0 <mark>4/13/2</mark> 019)

Nutrition	Current	Reference Range	Previous
Folate (ng/mL)	>20.0	≥4.6	>20.0 (04/13/2019)
Vitamin D, 25-OH* (ng/mL)	15.0 L	30.0~108.0	19.0 L (04/13/2019)
Vitamin B12 (pg/mL)	<150 L	232~1245	<150 L (04/13/2019)
Commonte			

Comments

Likely vitamin D deficiency. Consider increasing vitamin D intake (e.g., adequate sun exposure and diet supplementation).; Associated with anemia, malnutrition, and malabsorption. Treat underlying cause.

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
	Cholesterol, Total (mg/dL)	150			≤199	200~240	≥241	130 04/13/2019
Lipids	LDL Calculation (mg/dL)		124		≤99	100~129	≥130	103 04/13/2019
	HDL Direct (mg/dL)			20	≥56	35~55	≤34	20 04/13/2019
	Triglyceride (mg/dL)	30			≤149	150~200	≥201	33 04/13/2019

Comments

Follow NCEP: ATPIII guidelines. Dietary strategies to consider include adequate intake of monounsaturated fats and omega-3 fatty acids, moderate alcohol intake, reduction of total carbohydrate to less than 50% of calories, emphasis on low glycemic-load foods and reduction of fructose, weight loss and regular exercise.

rect	Test name	In Control	Moderate	High <mark>Risk</mark>	In Control Range	Moderate Range	High Risk Range	Previous
LDL Di	LDL Direct (mg/dL)	60			≤99	100~129	≥130	50 04/13/2019

sins	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
poproteins	Apo A-1 (m <mark>g/dL)</mark>			14	≥120		≤119	12 04/13/2019
lipol	Apo B (mg/dL)	16			≤89	90~119	≥120	12 04/13/2019
Apoli	Аро В: Аро А-1			>1.00	≤0.69	0.70~0.90	≥0.91	1.00 04/13/2019
0								

Comments

Apo A-1: Follow NCEP: ATPIII guidelines. Consider decreasing the saturated fat in the diet, maintaining a healthy weight, and exercising. Consider statins, niacin, omega-3 fatty acids, thiazolidinediones, and fibrates.

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
r	PLAC (nmol/min/mL)	54			≤224		≥225	23 04/13/2019
natic	Homocysteine (µmol/L)			20	≤9	10~14	≥15	18 04/13/2019
Inflammation	hs-CRP (mg/L)			10.1	≤0.9	1.0~3.0	≥3.1	19.1 04/13/2019
Inf	ox-LDL* (U/L)	11.3			≤60.0	60.1~70.0	≥70.1	19.2 04/13/2019
	MPO* (pmol/L)	<227.9			≤599.9	600.0~ 2999.9	≥3000.0	<227.9 04/13/2019

Comments

Homocysteine: Consider vitamin supplementation with pyridoxine (vitamin B6), vitamin B12, and folic acid. A diet low in

methionine is recommended in addition to the B vitamins.; Calculate DAS score. If DAS 6, likely diagnosis of rheumatoid arthritis as per ACR guidelines. Consider analgesics such as NSAIDs and disease-modifying anti rheumatic drugs (DMARDs). Regular exercise recommended.; hs-CRP: Consider weight loss, insulin control, and smoking cessation to reduce hs-CRP levels. Consider aspirin, lipid lowering,

and anti-diabetic agents.

ardial ess	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
Myocar Stres	NT-proBNP (pg/mL)	16			≤184	185~449	≥450	11 04/13/2019

tein rs	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
-ipoProtein Markers	sdLDL* (mg/dL)	11.0			≤50.0		≥50.1	13.0 04/13/2019
Lipo	Lp(a) (mg/dL)	16			≤29		≥30	10 04/13/2019

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

trol	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
Control	Glucose(Diabetes) (mg/dL)			20	70~100	101~126	≤69 ≥127	11 04/13/2019
mic	Hemoglobin A1c (%)			11.0	≤5.6	5.7~6.4	≥6.5	12.0 04/13/2019
Glycemic	Glycated Serum Protein (umol/L)			>1212	≤300		≥301	>1212 04/13/2019

Comments

HbA1C: Follow ADA guidelines. Consider losing excess weight, eating a healthy diet that is high in fiber and restricted in carbohydrates, and getting regular amounts of exercise. Consider biguanides, meglitinides, thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, and insulin.; Combining GSP results with HbA1c measurements provides a better assessment of long term risk of diabetic complications.; GSP: Elevated GSP levels suggest recent (approximately past 2 weeks) sustained hyperglycemia.

Insulin Resistance	Current	Reference Range	Previous
Adiponectin* (ug/mL)	1.1		20.0 (04/13/2019)
Ferritin (ng/mL)	199	30~400	174 (04/13/2019)

Adiponectin:

	Yc	our BMI is 22 kg/meters-squar	red		
	Body Mass Index (BMI)	Male	Female		
	kg/meters-squared	ug/mL	ug/mL		
	<25	4.7 - 49.2	8.5 - 56.1		
	25-30	3.8 - 35.0	6.1 - 47.2		
	>30	2.2 - 32.6	4.9 - 42.1		
	Body Mass Index (BMI) = (weight in Kg) / (height in metres) ²				

Cell	Test name	In Control	Moderate	High Risk	In Control Range	Moderate Range	High Risk Range	Previous
Beta Funct	Insulin (µU/mL)	12.0			2.6~24.9		≤2.5 ≥25.0	10.0 04/13/2019

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant.america.com support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

Thyroid	Current	Reference Range	Previous
T3 - Triiodothyronine (ng/mL)	>6.5 H	0.8~2.0	>6.5 H (04/13/2019)
T4 - Thyroxine (µg/dL)	16.3 H	4.5~9.8	17.8 H (04/13/2019)
Free T3 (pg/mL)	10.7 H	2.0~4.4	18.2 H (04/13/2019)
Free T4 (ng/dL)	>7.8 H	0.9~1.7	>7.8 H (04/13/2019)
TSH (µIU/mL)	20.941 H	0.111~4.910	20.328 H (04/13/2019)
Anti-TPO (IU/mL)	12	≤34	16 (<mark>04/13/2</mark> 019)
Reverse T3* (ng/dL)	51 H	7~23	51 H (04/13/2019)
Anti-TG (IU/mL)	<10.0	≤115.0	<10.0 (04/13/2019)

Labnotes

Anti-TG :- Anti-Tg: The testing method used is an electrochemiluminescence immunoassay "ECLIA" performed on cobas e immunoassay analyzers. The measured anti-Tg value can vary depending on the testing procedure used. Anti-Tg values determined on patient samples by different testing procedures cannot be directly compared with one another and could be the cause of erroneous medical interpretations.

Hormones	Current	Reference Range	Previous
Estradiol (pg/mL)	12.0 L	25.8~60.7	15.0 L (04/13/2019)
FSH (mIU/mL)	18.0 H	1.5~12.4	13.0 H (04/13/2019)
DHEA-S (µg/dL)	10.0 L	211.0~492.0	16.0 L (04/13/2019)
LH (mIU/mL)	12.0 H	1.7~8.6	20.0 H (04/13/2019)
SHBG (nmol/L)	12.0 L	16.5~55.9	12.0 L (04/13/2019)
Cortisol (µg/dL)	18.0	A.M.: 6.2-19.4 P.M.: 2.3-11.9	16.0 (04/13/2019)
Testosterone, Total (ng/dL)	250.0	249.0~836.0	450.0 (04/13/2019)
Free Testosterone (ng/dL)	7.72 L	9.00~30.00	15.13 (04/13/2019)
Progesterone (ng/mL)	20.000 H	≤0.149	10.000 H (04/13/2019)
Parathyroid Hormone (pg/mL)	20	15~65	17 (04/13/2019)
Estrone* (pg/mL)	48.4	10.2~49.9	51.1 H (04/13/2019)
Prolactin (ng/mL)	57.80 H	4.04~15.20	57.30 H (04/13/2019)
Dihydrotestosterone (pg/mL)	<50 L	82~671	<50 L (04/13/2019)
Pregnenolone (ng/mL)	>25.60 H	0.38~3.50	25.40 H (04/13/2019)

SHBG :- SHBG reference ranges are based on adult populations >18 years of age.

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

CBC w/ differential and Platelets	Current	Reference Range	Previous
WBC (x 10^3/µL)	18.00 H	4.23~9.07	16.00 H (04/13/2019)
RBC (x 10^6/µL)	>8.60 H	4.63~6.08	>8.60 H (04/13/2019)
Hemoglobin (g/dL)	18.0 H	13.7~17.5	20.0 H (04/13/2019)
Hematocrit (%)	20.0 L	40.1~51.0	11.0LC (04/13/2019)
MCV (fL)	18.0 L	83.5~99.5	10.0 L (04/13/2019)
MCH (pg)	19.0 L	25.7~32.2	17.0 L (04/13/2019)
MCHC (g/dL)	18.0 L	32.3~36.5	12.0 L (04/13/2019)
RDW - SD (fL)	16.0 L	35.1~43.9	10.0 L (04/13/2019)
RDW - CV (%)	16.0 H	11.6~14.4	15.0 H (04/13/2019)
Platelet Count (x 10^3/µL)	14.0LC	12 <mark>9.0~3</mark> 26.0	19.0LC (04/13/2019)
Neutrophil (%)	10.0 L	34.0~67.9	16.0 L (04/13/2019)
Lymphocytes (%)	15.0 L	21.8~53.1	20.0 L (04/13/2019)
Monocytes (%)	12.0	5.3~12.2	17.0 H (04/13/2019)
Eosinophils (%)	11.0 H	0.8~7.0	16.0 H (04/13/2019)
Basophils (%)	14.0 H	0.2~1.2	14.0 H (04/13/2019)
Immature Granulocyte (%)	18.0 H	≤2.1	13.0 H (04/13/2019)
Neutrophil Count (x 10^3/µL)	20.00 H	1.78~5.38	17.00 H (04/13/2019)
Lymphocyte Count (x 10^3/µL)	12.00 H	1.32~3.57	20.00 H (04/13/2019)
Monocytes Count (x 10^3/µL)	12.00 H	0.30~0.90	12.00 H (04/13/2019)
Eosinophil Count (x 10^3/µL)	10.00 H	≤0.54	10.00 H (04/13/2019)
Basophil Count (x 10^3/μL)	20.00 H	≤0.08	10.00 H (04/13/2019)
Immature Granulocyte Count (x 10^3/µL)	12.000 H	≤0.100	15.000 H (04/13/2019)
MPV (Mean Platelet Volume) (fL)	16.0 H	9.4~12.4	14.0 H (04/13/2019)
Nucleated RBC count (x 10^3/µL)	18.000 H	≤0.012	15.000 H (04/13/2019)
Nucleated RBC % (/100WBC)	20.0 H	≤0.2	17.0 H (04/13/2019)

Reticulocytes	Current	Reference Range	Previous
Reticulocyte count (x 10^6/µL)	>0.7200 H	0.0444~0.1451	>0.7200 H (04/13/2019)
Reticulocyte (%)	20.0 H	≤3.0	14.8 H (04/13/2019)
IRF (Immature Reticulocyte Fraction) (%)	17.1 H	2.3~13.4	13.3 (04/13/2019)
Retic-Hemoglobin (pg)	10.6 L	28.2~35.7	20.6 L (04/13/2019)

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

Hepatic Function Panel	Current	Reference Range	Previous
ALT (U/L)	13	≤41	17 (04/1 <mark>3/2</mark> 019)
AST (U/L)	15	≤40	19 (04/13/2019)
Alkaline Phosphatase (U/L)	250 H	40~129	220 H (04/13/2019)
Bili, Total (mg/dL)	16.5 H	≤1.2	15.8 H (04/13/2019)
Bili, Direct (mg/dL)	>20.0 H	≤0.3	18.7 H (04/13/2019)
Protein, Total (g/dL)	11.7 H	6.2~8.0	15.3 H <mark>(04/13</mark> /2019)

Renal Function Panel	Current	Reference Range	Previous
Sodium (mmol/L)	<80LC	136~145	<80LC (04/13/2019)
Chloride (mmol/L)	<60 L	98~107	<60 L (04/13/2019)
Potassium (mmol/L)	>10.0HC	3.5~5.1	>10.0HC (04/13/2019)
Carbon Dioxide (mmol/L)	18	18~29	17 L (04/13/2019)
Creatinine (mg/dL)	13.00 H	0.70~1.20	17.20 H (04/13/2019)
eGFR (mL/min/1.73m2)	5 L	≥60	5 L (05/12/2019)
eGFR(African-American) (mL/min/1.73m2)	6 L	≥60	4 L (04/13/2019)
BUN (mg/dL)	12	6~20	21 H (04/13/2019)
BUN/Creatinine Ratio	1 L	10~20	1 L (04/13/2019)
Calcium (mg/dL)	12.3 H	8.9~10.6	20.5HC (04/13/2019)
Glucose(Renal) (mg/dL)	16LC	70~100	15LC (04/13/2019)
Phosphate, Inorganic (mg/dL)	11.2 H	2.5~4.5	18.6 H (04/13/2019)
Albumin (g/dL)	4.2	3.5~5.2	4.0 (04/13/2019)

Labnotes

eGFR :- The eGFR is calculated from the Creatinine result and varies by patient gender, age and race. If patient is African-American, the eGFR(African-American) value is applicable.

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Nervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH	ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43

Tumor Markers	Current	Reference Range	Previous
PSA (Total) (ng/mL)	11.68 H	≤4.00	15.26 H (04/13/2019)
Free PSA (ng/mL)	12.00		18.16 (04/13/2019)
Free PSA% (%)	>100.0	≥30.0	>100.0 (04/13/2019)

Labnotes

PSA (Total) :- The testing method used is an electrochemiluminescence assay manufactured by Roche Diagnostics Inc. and performed on the Modular or Cobas system.

Values obtained with different assay methods or kits may be different and cannot be used interchangeably.

Test results cannot be interpreted as absolute evidence for the presence or absence of malignant disease. Free PSA :- The testing method used is an electrochemiluminescence assay manufactured by Roche Diagnostics Inc. and performed on the Modular or Cobas system. Values obtained with different assay methods or kits may be different and cannot be used interchangeably. Test results cannot be interpreted as absolute evidence for the presence or absence of malignant disease.

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ¹ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com

LAST NAME	FIRST NAME	GENDER	DATE OF BIRTH		
				ACCESSION ID	DATE OF SERVICE
VIBRANT AMERICA	A DEMO	MALE	1996-11-29	1905130043	05-12-2019 09:43
Other Marker	s	Current	Reference Ra	nge	Previous
		· · · · · · · · · · · · · · · · · · ·			
LDH (U/L)		17 L	135~225		12 L (04/13/2019)
ESR (Erythrocy	rte	17 H			40 (04/40/0040)
Codimontation D					
Sedimentation R	ate)	1/ 11	≤15		12 (04/13/2019)
Sedimentation R (mm/hour)	ate)	17 11	≤15		12 (04/13/2019)
Sedimentation R (mm/hour)			≤15		· · ·
Sedimentation R (mm/hour) Leptin* (ng/mL		28.0	≤15		33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL			\$15		· · ·
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes	.)	28.0		enerate erroneously	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p	.) -benzoquinone i	28.0 mine (metabolite c	f Acetaminophen) will g	enerate erroneously	· · ·
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p	.) -benzoquinone i	28.0 mine (metabolite c	f Acetaminophen) will g	enerate erroneously	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th	-) -benzoquinone i nat have taken to	28.0 mine (metabolite c	f Acetaminophen) will g	enerate erroneously	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p	-) -benzoquinone i nat have taken to	28.0 mine (metabolite c	f Acetaminophen) will g	enerate erroneously	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th	-) -benzoquinone i nat have taken to	28.0 mine (metabolite c	f Acetaminophen) will g	enerate erroneously	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p nples for patients th	-) -benzoquinone i nat have taken to	28.0 mine (metabolite c oxic doses of aceta	of Acetaminophen) will g aminophen.		33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th Lepti	-) -benzoquinone i nat have taken to n:	28.0 mine (metabolite c oxic doses of aceta Your BMI	f Acetaminophen) will g		33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th Lepti	-) -benzoquinone i nat have taken to n: 	28.0 mine (metabolite coxic doses of aceta Your BMI	of Acetaminophen) will g aminophen. is 22 kg/meters-squar	ed	33.0 (04/13/2019) low results for Uric Acid i
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th Lepti	-) -benzoquinone i nat have taken to n: 	28.0 mine (metabolite coxic doses of aceta Your BMI	of Acetaminophen) will g aminophen.	ed	33.0 (04/13/2019)
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th Lepti	-) -benzoquinone i nat have taken to n: 	28.0 mine (metabolite coxic doses of aceta Your BMI	of Acetaminophen) will g aminophen. is 22 kg/meters-squar	ed Fen	33.0 (04/13/2019) low results for Uric Acid i
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- mples for patients th Lepti	-) -benzoquinone i nat have taken to n: 	28.0 mine (metabolite coxic doses of aceta Your BMI	of Acetaminophen) will g aminophen. is 22 kg/meters-squar Male	ed Fen ng/	33.0 (04/13/2019) low results for Uric Acid i
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- mples for patients th Lepti	-) -benzoquinone i nat have taken to n: 	28.0 mine (metabolite coxic doses of aceta Your BMI Age Years	of Acetaminophen) will g aminophen. is 22 kg/meters-squar e Male ng/mL	ed Fen ng/ 4 4.7-	33.0 (04/13/2019) low results for Uric Acid i nale mL
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- mples for patients th Lepti	-) -benzoquinone i hat have taken to n: ody Mass Index (BMI) meters-squared 18-25	28.0 mine (metabolite contraction of a ceta poxic doses of a ceta Your BMI Age Years >18	of Acetaminophen) will g aminophen. is 22 kg/meters-square Male ng/mL 1.1-13.4	ed Fen ng/ 4 4.7-	33.0 (04/13/2019) low results for Uric Acid i nale mL 23.7
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- mples for patients th Lepti	-) -benzoquinone i hat have taken to n: ody Mass Index (BMI) meters-squared 18-25 25-30 N/A	28.0 mine (metabolite contraction of a ceta poxic doses of a ceta Your BMI Age Years >18 >18 >18 5-9.9	of Acetaminophen) will g aminophen. is 22 kg/meters-square Male ng/mL 1.1-13.4 1.8-19.5	ed Fen ng/ 4 4.7- 9 8.0- 1.1-16.8	33.0 (04/13/2019) low results for Uric Acid i nale mL 23.7
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- mples for patients th Lepti	-) -benzoquinone i hat have taken to n: -benzoquinone i nat have taken to n: -benzoquinone i nat have taken to n: -benzoquinone i nat have taken to n: -benzoquinone i nat have taken to -benzoquinone i nat have taken to -benzoquinone i nat have taken to -benzoquinone i nat have taken to -benzoquinone i n: -benzoquinone i -benzoquinone i	28.0 mine (metabolite coxic doses of aceta Your BMI Age Years >18 >18 5-9.9 10-13.9	is 22 kg/meters-square Male 1.1-13.4 1.8-19.5	ed Fen ng/ 4 4.7 9 8.0 1.1-16.8 1.4-16.5	33.0 (04/13/2019) low results for Uric Acid i nale mL 23.7
Sedimentation R (mm/hour) Leptin* (ng/mL bnotes c Acid :- N-acetyl-p- nples for patients th Lepti	-) -benzoquinone i hat have taken to n: ody Mass Index (BMI) meters-squared 18-25 25-30 N/A N/A N/A N/A	28.0 mine (metabolite control operation of a ceta point doses of a ceta Your BMI Age Years >18 >18 >18 5-9.9 10-13.9 14-17.9	is 22 kg/meters-square Male 1.1-13.4 1.8-19.5	ed Fen ng/ 4 4.7- 9 8.0- 1.1-16.8 1.4-16.5 1.1-24.9	33.0 (04/13/2019) low results for Uric Acid i nale mL 23.7

Tests flagged with * were developed by and performance characteristics were determined by Vibrant America. Indicated tests are not FDA-cleared or approved. The laboratory is regulated under CLIA and is CAP certified hence qualified to perform high-complexity testing. This test is used for clinical purposes. It should not be regarded as investigational or for research. Tests flagged with ⁴ were performed at Vibrant Genomics. Tests flagged with ² have analytics done at Vibrant Wellness. Laboratory Director: Mervyn Sahud, MD CLIA: 05D2078809 CLF: 00346278 Vibrant America Clinical Laboratory, 1021 Howard Avenue, Suite B, San Carlos, CA 94070. Phone: +1(866)364-0963; FAX: +1(650)508-8260; Email: support@vibrant-america.com